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LETTER TO THE EDITOR 

On the spherical limit of anisotropic n-vector models 

N Angelescu, M Bundaru and G Costache 
Institute of Physics and Nuclear Engineering, Bucharest-Magurele, MG-6, Romania 

Received 24 November 1988 

Abstract. We show that, in an n-vector model with anisotropy affecting the interactions 
within a finite-dimensional subspace of the spin space, non-analyticity of the free energy 
can appear in the spherical limit (n =CO)  even in a finite system. The transition from the 
paramagnetic state is generically of mean-field type and is accompanied by spontaneous 
magnetisation within the anisotropy subspace. 

In a recent paper (Angelescu et a1 1986) the 'classical spin' model proposed by Fuller 
and Lenard (1979) has been analysed for lattice dimensions d = 1 and d = 00 (mean 
field). The area which proved to be of particular interest was the spherical limit of 
the model, where a phase transition appears in d = 1, even for two interacting spins. 
Levine and Neuberger (1986) soon observed that the Fuller-Lenard (FL) model (in 
which the 'spins' are oriented two-dimensional planes in R", i.e. elements of the 
Grassman manifold G(2, n))  is very similar, especially for large n, to the CP"-' 
field-theory model, studied in detail by di Vecchia e? a1 (1984). However, there is no 
rigorous derivation of the spherical limit (n + 00) of the FL model in the general case 
(arbitrary d and external field) so it is unclear to what extent the equivalence with 
CP"-' holds. 

When trying to derive the n + 03 limit of the FL model we were led to consider such 
a limit for an anisotropic n-vector model with non-homogeneous interactions and 
external fields. In the isotropic case two methods have been conceived for dealing with 
non-homogeneous interactions. 

(i) The coalescing bound method of Kac and Thompson (1971) was used by Knops 
(1973), but his derivation relies on a non-trivial assertion (see the argument outlined 
by h o p s  between equations (2.14) and (2.15) in his paper) which was left unproved. 

(ii) The l / n  expansion (saddle-point) method of Abe (1973), rigorously developed 
in Angelescu et a1 (1979) and Kupiainen (1980), was used by Angelescu er al to study 
arbitrary finite ferromagnetic systems in the spherical limit and in particular the main 
theorem of Knops (1973) on the free energy has been rederived. 

This letter is devoted to the study of the influence on the spherical limit of an 
anisotropy affecting a finite number of spin components in an otherwise isotropic 
n-vector model. Though we do not solve the problem at the level of complexity needed 
to handle the spherical limit of the FL model, we think the results throw some light 
on what is going on in that case, too. 

Particular instances of anisotropic n-vector models with homogeneous interactions 
previously considered in the n +CO limit are the 'm-vector-like' n-vector model with 
mln  = constant # 0, where m is the number of components affected by anisotropy 
(Suzuki 1973, Hikami and Abe 1974) and the extremely anisotropic (Ising-like) model 
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(Moore et al 1974, Aharony 1974, Hikami 1974, Pearce and Thompson 1976). In the 
latter case a mean-field behaviour has been found. 

Our result shows that a mean-field transition is in a certain sense a ‘generic’ artefact 
of the spherical limit. The anisotropy has the role of simply shrinking the range of the 
spherical fields, which below T, stick to a boundary. Hence, non-analiticity of the free 
energy may occur even for a finite number of spins and, if the anisotropy-induced 
boundary has several analytic pieces, several transitions are possible. 

The model we study consists of N classical spins represented as ( n  + k ) -  
dimensional vectors ( T,, ~ , ) , j  = 1,  . . . , N, T, E R ”, U, E R k, of length ( T: + ~ f ) l / *  = m, 
with interaction energy given by 

n k 

p=1 U = l  
X =  - [$(T’ ,JT’)+(H, T ’ ) ] -  C [$(U’, B ” u ” ) + ( ~ ” ,  U ” ) ]  ( 1 )  

where rp,  U”, H and h” are considered as vectors in R N ,  e.g. U ”  = (U;, . . . , U ; )  and 
brackets denote the usual scalar product in RN, while J and B” are the interaction 
matrices. The second term in ( 1 )  accounts for an anisotropic interaction within the 
‘anisotropy subspace’ R k  of the U components. 

We want to obtain the spherical limit of the free energy per spin component 

FN(P,  H, h )  = -P- ’  lim(n + k)-’ log ZN,,(P, H, h )  
,+a3 

where ZN,n is the partition function. For simplicity we assume ferromagnetism and 
positive external fields: 

Jij 3 0 B;>O Hi  > 0 h , ” a O  

Vi, j  = 1 , .  . . , N and V v = l ,  . . . ,  k. 
(3) 

Moreover we make the (stronger than necessary) assumption that B” are connecting 
all sites, i.e. some power of the B” has no zero entry. 

To compute Z , ,  we account for the fixed spin-length condition using for S (  ~j’+ U; - 
n - k )  the representation 

S(x) = ( ~ p ) - ’  dtj exp[ -$(y,+it,)x] I 
and perform the resulting Gaussian integrals over r p  and U’. One gets 

zN,, = ( n k / 2 / n p ) N  d t  exp[njN(++ii;  P, H, h ) ]  I,. 
k 

x {exp[$Tr(+ +itl)]/det[(np/2.rr)(++i~- B ” ) ] }  (4) 
U =  1 

where 9 and i are diagonal matrices with entries x, tj. Denoting d = y + i f  we have 

f N ( d ;  p , H ,  h ) = &  Tra-~l0gdet [ (P /2 . r r ) (d*-J ) ]+~P((a-J ) -~H,  H )  
k 

++P C [ (a-  BY)- ’h” ,  h ” ] .  
u = l  

The representation (4) holds for all y such that the Gaussian integrals converge, i.e. 
y E 9 where 

~ ~ { ~ E R ~ I ~ - J > O , ~ - B ” > O ,  ~ = l , .  .., k } .  ( 6 )  
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Note that (4) is precisely of the form required to apply the saddle-point method. 
Clearly f N  is an analytic function of d on the domain Re d E 9. One has to find the 
stationary points of f N ,  i.e. to solve in this domain the system a f N / d d j  = 0, j = 1,  . . . , N. 
The imaginary part of these equations has the structure XJEl A,( y, t ) $  = 0 where the 
matrix A( y, t )  > 0 for all t if y E 9, implying that the only stationary points of f N  are 
real. This simplifies the matter considerably, because for t = 0 f N  is a real, strictly 
convex function of y on 9, so it can have at most one stationary point in 9, namely 
the point-if any-where f N  attains its minimum value. 

Now, if h ” >  0, Vv = 1 , .  . . , k, such a point surely exists in 9 because f N  + CO 

whenever y + CO or approaches the bounadary of 9. Indeed, if Amin(  $ - J) + 0 one has 
-log det( $ - J )  + CO, while if Amin( $ - B”)  + 0 then, due to our assumption (3) and the 
connectivity of B”, the corresponding eigenvector e(”)(  y )  has strictly positive com- 
ponents and hence non-zero projection onto h”, so 

As a consequence the minimum point y(P,  H, h )  is itself analytic in all variables and 
is the unique solution in 9 of dfN/d yJ = 0, i.e. 

where the vectors M and m‘“’ are defined by 

($ - J ) M  = H ($ - B”)“”’ h” v = 1, . . . , k. (8) 

The free energy (2) given by the saddle-point method outlined above is the minimum 
value of f N  on 9: 

&(P,  H, h )  = - f N ( Y ( P ,  H, h ) ;  P, H, h )  (9) 

hence it is analytic. Thereby M and m‘”’ are the magnetisations along axes p and v, 
i.e. the spherical limits of ( T / ” ) ~  and (a”), respectively. Moreover the whole asymptotic 
series ( l / n  expansion) can be obtained in the usual way (Angelescu et a1 1979). 

On the other hand, if h” = 0 then f N  in (5) with t = 0 no longer diverges when 
Amin($-BY)+O and it may happen that no stationary point exists in 9. Then it is 
much more difficult to obtain the asymptotics of (4), because one has to take into 
account the singularity structure (near the boundary) of the factors det(? + i f -  BU)-’. 
Fortunately, the dominant asymptotic contribution still depends only on the behaviour 
of f N  on 

% = { y l $ - J > O , $ - B ” > O ,  v = l ,  . . . ,  k} (6’) 

FN(P, H, 0) = -minf,(y; P ,  H, 0) = - - f N ( Y ( P ,  H I ) ;  P, H, 0) 

and one can obtain it by letting hYJO in the previous result. Thus 

(10) 
Y e 9  

where y ( P ,  H )  = limhUJ.,, y (P ,  h, h ” ) .  To find r(P, H )  one has to solve (7) in 6 with 
M and m‘”) defined in (8) where we set h” = 0. The main consequence of this result 
is that y ( P , H ) ,  and hence F N ,  may no longer be analytic and this happens when 
y ( P , H )  pinches the boundary of 5. Looking at (8), one sees that in this case m‘”’ 
may be non-zero and it will be an eigenvector of $ ( P ,  H )  - E ”  corresponding to the 
zero eigenvalue. Thus one can obtain a phase transition in a finite system accompanied 
by spontaneous magnetisation in the anisotropy subspace. 
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To perform a more detailed study of such a transition we further simplify things 
by putting H = 0 as well. We then have to minimise on 

f N ( y ;  p, 0,O) = $ Tr $ - f log det ($ - J )  (11)  
whose minimum point is denoted y ( P ) .  Leaving aside the constraint $ - B” 5 0 that 
is minimising f N  on 3 - J > 0, one obtains its minimum point y ‘” (P )  as the unique 
solution of 

($ - J ) T ’ =  JJ p j =  1 , .  . . , N. (12) 
For pJ0, y jo ’ (p )  - p- ’ ,  and therefore y ‘ ” ( P )  E 9. For /3 +CO, y ‘” (P )  approaches the 
minimum point of Tr $ on Ami,(? - J )  = 0, which is y j o ) ( ~ )  = Z j Z 1  J j j .  A transition will 
appear if and only if y‘”(P)  crosses the boundary of 9, which happens if and only 
if $‘o’(oo) - B” is not positive semidefinite for some v. If the latter condition is fulfilled, 
let pc be the supremum of p for which y ‘” (P )  E 9 and let yc be y‘”(Pc). Then, for 
at least one v, $ c -  B” has the zero eigenvalue (while still positive semidefinite). 

N 

We shall study the transition at pc in the generic case when: 
(i) for only one v, say v = 1, is qC- B” singular while $ c -  B” > 0 for v # 1; 
(ii) the curve y ‘” (P )  is transverse to the manifold Ami,,($ - B’)  = 0, i.e. 

Now an easy computation shows that gradyAmin($c- B ’ )  = e(’)2 where is the vector 
whose components are (e:’))’ and e“) is the normalised eigenvector of $ c -  B’ with 
zero eigenvalue. Also 

where 1 is the vector with all components equal to 1 and [ P ( y ) - ‘ I j j =  [($-J)ij’]’ .  
Thus (13) becomes 

( p ( y C ) l ,  e(’)2)  > 0. (13‘) 
For p > p c  in a neighbourhood of pc,  y ( p )  will belong to the manifold 

Amin($ - B ’ )  = 0. By (3 )  and the connectivity of B’, Amin($ - B ’ )  is non-degenerate 
and its eigenvector e‘’)( y )  has strictly positive components. In particular, the manifold 
Ami,($ - B ’ )  = 0 is analytic hence y ( P )  is analytic for /3 > pc.  

The critical behaviour is controlled by the behaviour of y ( p )  near pc. For p < pc, 
y ( P ) = y ‘ ” ( P )  and the relevant information is provided by (14) .  For p > p c  one 
accounts for Amin($  - B ’ )  = 0 by the Lagrange multiplier method, and obtains a jump 
of d y ( P ) l d P  at P c  

where 
p = ( P ( ~ J I ,  e( ’ )2 ) / (P (yc )“ ’ ’2 ,  e“)’) > o (16) 

is the derivative of the Lagrange multiplier at p:. 

e ( ’ ) ( y ( p ) ) .  By taking the p derivative in (7) one gets for p .1 pc 
The spontaneous magnetisation will, for p > pc and m(’)  > 0, be proportional to 
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From which, by integration, and setting as usual t = ( p  -pc ) /pc ,  

i.e. the critical index of m ( ' )  is 4. 
t J . 0  mj"(p)- t 1/2 p 1/2 e j  (1) 

The susceptibility matrix xij =dmj')/ahf is given by 

~ ( p ) = ( + -  B1+2p~'"P("rit'")-'. 

When p pc,  m'" = 0, y ( p )  = y'"(P)  and 

dhmin 
- A m i n ( + " ) ( P ) - ~ ' ) -  t ~ c - ( ( ~ c ) = - ~ c t ( ~ ( y c ) l ,  e")') 

dP 

L235 

(17) 

from which we obtain 

xij( /3)  - e f l" i" /Amin(~ 'O' (p )  - B') - ~ t ~ - ' [ ~ c ( P ( y c ) l ,  e ( ' ) 2 ) ] - ' e ~ ' ) e ~ ' ) .  (19) 
For p > pc, equation (18) still makes sense because G(')P&(')> 0 and the minimum 

eigenvalue of 9 - B'+2/3&("P(y)d'" behaves for t J. 0 like the diagonal element of 
2/3&")P&''). Hence 

x i j ( p )  - t-'[2pc(~(yc)1, e( ' )2) ] - 'e f ' )e j ' )  (20) 
and therefore the susceptibility critical index equals 1,  from both sides. 

Finally, the specific heat in zero external field 

Then (15) shows that there is a positive specific heat jump at pc, 

AC = ipp:. (22) 
Thus, the transition at pc from the disordered high-temperature state to a state with 

spontaneous magnetisation in the anisotropy subspace has, under assumption (13), a 
mean-field character. 

When p is further increased, y ( P )  will move within the boundary of 9 and a new 
transition may occur when, e.g., + ( p )  - B2 becomes singular. We exemplify this by 
producing an example of a three-spin system sufficiently simple to allow analytic 
calculations. The isotropic part of the interaction and the external fields are taken 
zero. The interaction matrices for the first two spin components are 

0 0 0  0 3 0  
(23) 

We have 
1 3  

f N ( y ) = -  C (pyj-In yj)+constant. 
2 j = ,  

Hence y jo ) (p )  = p-' ,  which is in 9 for p < pc = f .  For p E ( f ,  E), y ( P )  = ( l / &  f ,  f ) ,  for 
which Amin(+(p) - B') = 0 and + ( p )  - B2> 0. In this interval m'2 ' (p )  = (0, 0,O) while 
m ( " ( p ) = [ 1 - ( p c / p ) ] ' / 2  (O,l , l) .  At P = p ; = g ,  Amin(?(pb)-B2)=O too. When p >  
PA, ( + ( p )  - B')m"' = 0, ( + ( p )  - B2)m(2)= 0, m"', m(')> 0, from which one can express 
y only in terms of x = ( m p ) /  m$'): 



L236 Letter to the Editor 

Introducing this into (7), one obtains 

where x is the positive root of (i)2x2- ( l /Sp)x - 1 = 0. Thus, beyond p:, the spon- 
taneous magnetisation changes its direction in the anisotropy subspace and, for p + 03, 

approaches its saturation value 1. 
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